
Appendix A

A SAS/IML Primer

Contents
A.1 Overview of the SAS/IML Language . 325
A.2 SAS/IML Functions That Are Used in This Book 326
A.3 The PRINT Statement . 328
A.4 Subscript Reduction Operators in SAS/IML Software 328
A.5 Reading Data from SAS Data Sets . 329

A.5.1 Reading Data into SAS/IML Vectors 329
A.5.2 Creating Matrices from SAS Data Sets 330

A.6 Writing Data to SAS Data Sets . 330
A.6.1 Creating SAS Data Sets from Vectors 331
A.6.2 Creating SAS Data Sets from Matrices 331

A.7 Creating an ID Vector . 331
A.8 Creating a Grid of Values . 332
A.9 Modules That Replicate SAS/IML Functions 333

A.9.1 The DISTANCE Function . 333
A.9.2 The FROOT Function . 334
A.9.3 The SQRVECH Function . 335
A.9.4 The SAMPLE Function . 336

A.10 SAS/IML Modules for Sample Moments 336
A.11 References . 338

A.1 Overview of the SAS/IML Language
The SAS/IML language is a high-level matrix language that enables SAS users to develop algorithms
and compute statistics that are not built into any SAS procedure. The language contains hundreds
of built-in functions for statistics, data analysis, and matrix computations, and enables you to call
hundreds of DATA step functions. You can write your own functions to extend the language.

If you are serious about simulating data (especially multivariate data), you should take the time to
learn the SAS/IML language. The following resources can help you get started:

• Read chapters 1–4 and 13–15 of Statistical Programming with SAS/IML Software (Wicklin
2010).

• Subscribe to The DO Loop blog, which is a statistical programming blog that is located at the
URL blogs.sas.com/content/iml.

blogs.sas.com/content/iml

326 Appendix A: A SAS/IML Primer

• Ask questions at the SAS/IML Community, which is located at communities.sas.com/
community/support-communities.

• Read the first few chapters of the SAS/IML User’s Guide.

A.2 SAS/IML Functions That Are Used in This Book
It is assumed that the reader is familiar with

• Basic DATA step functions such as SQRT, CEIL, and EXP. When used in SAS/IML software,
these functions operate on every element of a matrix.

• Statistical functions such as PDF, CDF, and QUANTILE (see Section 3.2). These functions
also act on every element of a matrix. In certain cases, you can pass in vectors of parameters
to these functions.

• Control statements such as IF-THEN/ELSE and the iterative DO statement.

This section describes SAS/IML functions and subroutines that are used in this book. The definitions
are taken from the SAS/IML User’s Guide. Note: The functions marked with an asterisk (�) were
introduced in SAS/IML 12.1, which is distributed as part of the second maintenance release of SAS
9.3.

ALL function checks for all nonzero elements

ANY function checks for any nonzero elements

BLOCK function forms block-diagonal matrices

CHOOSE function evaluates a logical matrix and returns values based on whether each
element is true or false

COLVEC function reshapes a matrix into a column vector

CORR function computes correlation statistics

COUNTN function counts the number of nonmissing values

COV function computes a sample variance-covariance matrix

CUPROD function computes cumulative products

CUSUM function computes cumulative sums

DIAG function creates a diagonal matrix

DISTANCE function� computes pairwise distances between rows of a matrix

DO function produces an arithmetic series

EIGEN call computes eigenvalues and eigenvectors

EIGVAL function computes eigenvalues

FINISH statement denotes the end of a module

communities.sas.com/community/support-communities
communities.sas.com/community/support-communities

A.2: SAS/IML Functions That Are Used in This Book 327

FREE statement frees the memory associated with a matrix

FROOT function� numerically finds zeros of a univariate function

I function creates an identity matrix

INV function computes the inverse

J function creates a matrix of identical values

LOAD statement loads modules and matrices from library storage

LOC function finds indices for the nonzero elements of a matrix

MAX function finds the maximum value of a matrix

MEAN function computes sample means

MEDIAN function computes sample medians

MIN function finds the smallest element of a matrix

NCOL function finds the number of columns of a matrix

NROW function finds the number of rows of a matrix

POLYROOT function finds zeros of a real polynomial

PROD function computes products

QNTL call computes sample quantiles (percentiles)

RANDGEN call generates random numbers from specified distributions

RANDMULTINOMIAL function generates a random sample from a multinomial distribution

RANDMVT function generates a random sample from a multivariate Student’s t distribution

RANDNORMAL function generates a random sample from a multivariate normal distribution

RANDSEED call initializes seed for subsequent RANDGEN calls

RANDWISHART function generates a random sample from a Wishart distribution

RANK function ranks elements of a matrix, breaking ties arbitrarily

REPEAT function creates a matrix of repeated values

RETURN statement returns from a module

ROOT function performs the Cholesky decomposition of a matrix

ROWVEC function reshapes a matrix into a row vector

SAMPLE function� generates a random sample of a finite set

SETDIF function compares elements of two matrices

SHAPE function reshapes a matrix

SOLVE function solves a system of linear equations

SORT call sorts a matrix by specified columns

SQRVECH function converts a symmetric matrix that is stored columnwise to a square matrix

SSQ function computes the sum of squares of all elements

START statement defines a module

328 Appendix A: A SAS/IML Primer

STD function computes a sample standard deviation

STOP statement stops execution of statements

STORE statement stores matrices and modules in a library

SUM function computes sums

T function transposes a matrix

TABULATE call counts the number of unique values in a vector

TOEPLITZ function generates a Toeplitz or block-Toeplitz matrix

TRISOLV function solves linear systems with triangular matrices

UNION function performs unions of sets

UNIQUE function sorts and removes duplicates

VAR function computes a sample variance

VECDIAG function extracts the matrix diagonal into a vector

XSECT function intersects sets

A.3 The PRINT Statement
The PRINT statement displays the data in one or more SAS/IML variables. The PRINT statement
supports four options that control the output:

PRINT x[COLNAME= ROWNAME= FORMAT= LABEL=] ;

COLNAME=c
specifies a character matrix to be used for the column heading of the matrix

ROWNAME=r
specifies a character matrix to be used for the row heading of the matrix

FORMAT=format
specifies a valid SAS or user-defined format to use to print the values of the matrix

LABEL=label
specifies the character string to use as a label for the matrix

A.4 Subscript Reduction Operators in SAS/IML Software
One way to avoid writing unnecessary loops is to take full advantage of the subscript reduction
operators for matrices. These operators enable you to perform common statistical operations (such
as sums, means, and sums of squares) on the rows or the columns of a matrix. A common use of
subscript reduction operators is to compute the marginal frequencies in a two-way frequency table.

The following table summarizes the subscript reduction operators for matrices and specifies an
equivalent way to perform the operation that uses function calls.

A.5: Reading Data from SAS Data Sets 329

Table A.1 Subscript Reduction Operators for Matrices

Operator Action Equivalent Function

+ Addition sum(x)
Multiplication prod(x)
>< Minimum min(x)
<> Maximum max(x)
>:< Index of minimum loc(x=min(x))[1]
<:> Index of maximum loc(x=max(x))[1]
: Mean mean(x)
Sum of squares ssq(x)

For example, the expression x[+,] uses the '+' subscript operator to “reduce” the matrix by
summing the elements of each row for all columns. (Recall that not specifying a column in the
second subscript is equivalent to specifying all columns.) The expression x[:,] uses the ':'
subscript operator to compute the mean for each column. Row sums and means are computed
similarly. The subscript reduction operators correctly handle missing values.

A.5 Reading Data from SAS Data Sets
You can read each variable in a SAS data set into a SAS/IML vector, or you can read several variables
into a SAS/IML matrix, where each column of the matrix corresponds to a variable. This section
discusses both of these techniques.

A.5.1 Reading Data into SAS/IML Vectors
You can read data from a SAS data set by using the USE and READ statements. You can read
variables into individual vectors by specifying a character matrix that contains the names of the
variables that you want to read. The READ statement creates column vectors with those same names,
as shown in the following statements:

proc iml;
/* read variables from a SAS data set into vectors */
varNames = {"Name" "Age" "Height"};
use Sashelp.Class(OBS=3); /* open data set for reading */
read all var varNames; /* create three vectors: Name,...,Height */
close Sashelp.Class; /* close the data set */
print Name Age Height;

Figure A.1 First Three Observations Read from a SAS Data Set

Name Age Height

Alfred 14 69

Alice 13 56.5

Barbara 13 65.3

330 Appendix A: A SAS/IML Primer

A.5.2 Creating Matrices from SAS Data Sets
You can also read a set of variables into a matrix (assuming that the variables are either all numeric or
all character) by using the INTO clause on the READ statement. The following statements illustrate
this approach:

/* read variables from a SAS data set into a matrix */
varNames = {"Age" "Height" "Weight"};
use Sashelp.Class(OBS=3);
read all var varNames into m; /* create matrix with three columns */
close Sashelp.Class;
print m[colname=VarNames];

Figure A.2 First Three Rows of a Matrix

m

Age Height Weight

14 69 112.5

13 56.5 84

13 65.3 98

You can read only the numeric variable in a data set by specifying the _NUM_ keyword on the
READ statement:

/* read all numeric variables from a SAS data set into a matrix */
use Sashelp.Class;
read all var _NUM_ into y[colname=NumericNames];
close Sashelp.Class;
print NumericNames;

Figure A.3 The Names of the Numeric Variables Read into a Matrix

NumericNames

Age Height Weight

The matrix NumericNames contains the names of the numeric variables that were read; the columns
of matrix y contain the data for those variables.

A.6 Writing Data to SAS Data Sets
You can write data in SAS/IML vectors to variables in a SAS data set, or you can create a data set
from a SAS/IML matrix, where each column of the matrix corresponds to a variable.

A.7: Creating an ID Vector 331

A.6.1 Creating SAS Data Sets from Vectors
You can use the CREATE and APPEND statements to write a SAS data set from vectors or matrices.
The following statements create a data set called OutData in the Work library:

/* create SAS data set from vectors */
x = T(1:10); /* {1,2,3,...,10} */
y = T(10:1); /* {10,9,8,...,1} */
create OutData var {x y}; /* create Work.OutData for writing */
append; /* write data in x and y */
close OutData; /* close the data set */

The CREATE statement opens Work.OutData for writing. The variables x and y are created; the type
of the variables (numeric or character) is determined by the type of the SAS/IML vectors of the
same name. The APPEND statement writes the values of the vectors listed on the VAR clause of the
CREATE statement. The CLOSE statement closes the data set.

Row vectors and matrices are written to data sets as if they were column vectors. You can write
character vectors as well as numeric vectors.

A.6.2 Creating SAS Data Sets from Matrices
To create a data set from a matrix of values, use the FROM clause on the CREATE and APPEND
statements. If you do not explicitly specify names for the data set variables, the default names are
COL1, COL2, and so forth. You can explicitly specify names for the data set variables by using the
COLNAME= option in the FROM clause, as shown in the following statements:

/* create SAS data set from a matrix */
z = x || y; /* horizontal concatenation */
create OutData2 from x[colname={"Count" "Value"}];
append from x;
close OutData2;

A.7 Creating an ID Vector
You can use the REPEAT and SHAPE (or COLVEC) functions to generate an ID variable as in
Section 4.5.2.

For example, suppose that you have three patients in a study. Some measurement (for example,
their weight) is taken every week for two weeks. You can order the data according to patient ID or
according to time.

If you order the data by patient ID, then you can use the following statements to generate a
categorical variable that identifies each observation:

proc iml;
N = 2; /* size of each sample */
NumSamples = 3; /* number of samples */
ID = repeat(T(1:NumSamples), 1, N); /* {1 1,

2 2,
3 3} */

SampleID = colvec(ID); /* convert to long vector */

332 Appendix A: A SAS/IML Primer

The syntax REPEAT(x, r, c) stacks the values of the x matrix r times in the vertical direction and
c times in the horizontal direction. The COLVEC function stacks the values (in row-major order)
into a column vector.

If you order the data by time, then you can use the following statements to create an ID variable:

ID = repeat(1:NumSamples, 1, N); /* {1 2 3 1 2 3 ... */
ReplID = colvec(ID); /* convert to long vector */
print SampleID ReplID;

Figure A.4 Two Ways to Construct an ID Variable

SampleID ReplID

1 1

1 2

2 3

2 1

3 2

3 3

A.8 Creating a Grid of Values
It is useful to generate all pairwise combinations of elements in two vectors. For example, if x =

{0, 1, 2} and y = {-1, 0, 1}, then the grid of pairwise values contains nine values as shown in
Figure A.5.

proc iml;
/* Return ordered pairs on a regular grid of points.

Return value is an (Nx*Ny x 2) matrix */
start Expand2DGrid(_x, _y);

x = colvec(_x); y = colvec(_y);
Nx = nrow(x); Ny = nrow(y);
x = repeat(x, Ny);
y = shape(repeat(y, 1, Nx), 0, 1);
return (x || y);

finish;

/* test the module */
x = {0,1,2}; y = {-1,0,1};
g = Expand2DGrid(x,y);
print g;

A.9: Modules That Replicate SAS/IML Functions 333

Figure A.5 A Grid of Values

g

0 -1

1 -1

2 -1

0 0

1 0

2 0

0 1

1 1

2 1

A.9 Modules That Replicate SAS/IML Functions
Some function that are used in this book were introduced in SAS/IML 9.3 or SAS/IML 12.1. If
you are using an earlier version of SAS/IML software, this section presents SAS/IML modules that
reproduce the primary functionality of the functions.

A.9.1 The DISTANCE Function
The DISTANCE function computes pairwise distances between rows of a matrix and is used in
Section 14.6. The EUCLIDEANDISTANCE and PAIRWISEDIST modules implement some of the
functionality.

proc iml;
/* compute Euclidean distance between points in x and points in y.

x is a p x d matrix, where each row is a point in d dimensions.
y is a q x d matrix.
The function returns the p x q matrix of distances, D, such that
D[i,j] is the distance between x[i,] and y[j,]. */

start PairwiseDist(x, y);
if ncol(x)^=ncol(y) then return (.); /* Error */
p = nrow(x); q = nrow(y);
idx = T(repeat(1:p, q)); /* index matrix for x */
jdx = shape(repeat(1:q, p), p); /* index matrix for y */
diff = abs(X[idx,] - Y[jdx,]);
return(shape(sqrt(diff[,##]), p));

finish;

334 Appendix A: A SAS/IML Primer

/* compute Euclidean distance between points in x.
x is a pxd matrix, where each row is a point in d dimensions. */

start EuclideanDistance(x); /* in place of 12.1 DISTANCE function */
y=x;
return(PairwiseDist(x,y));

finish;

x = { 1 0,
1 1,

-1 -1};
y = { 0 0,

-1 0};
P = PairwiseDist(x,y); /* not printed */
D = EuclideanDistance(x);
print D;

Figure A.6 Distances between Two-Dimensional Points

D

0 1 2.236068

1 0 2.8284271

2.236068 2.8284271 0

A.9.2 The FROOT Function
The FROOT function numerically finds zeros of a univariate function. The BISECTION module
implements some of the functionality of the FROOT function. To use the BISECTION module, the
function whose root is desired must be named FUNC.

/* Bisection: find root on bracketing interval [a,b].
If x0 is the true root, find c such that
either |x0-c| < dx or |f(c)| < dy.
You could pass dx and dy as parameters. */

start Bisection(a, b);
dx = 1e-6; dy = 1e-4;
do i = 1 to 100; /* max iterations */

c = (a+b)/2;
if abs(Func(c)) < dy | (b-a)/2 < dx then

return(c);
if Func(a)#Func(c) > 0 then a = c;
else b = c;

end;
return (.); /* no convergence */

finish;

/* test it: Find q such that F(q) = target */
start Func(x) global(target);

cdf = (x + x##3 + x##5)/3;
return(cdf-target);

finish;

A.9: Modules That Replicate SAS/IML Functions 335

target = 0.5; /* global variable used by Func module */
q = Bisection(0,1); /* find root on interval [0,1] */
print q;

Figure A.7 Using Bisection to Solve for a Quantile

q

0.7706299

A.9.3 The SQRVECH Function
The SQRVECH function converts a symmetric matrix that is stored columnwise to a square matrix.
The SQRVECH function is used in Section 8.5.2 and Section 10.4.2. The MYSQRVECH function
duplicates the functionality of the SQRVECH function.

/* function that duplicates the SQRVECH function */
start MySqrVech(x);

m = nrow(x)*ncol(x);
n = floor((sqrt(8*m+1)-1)/2);
if m ^= n*(n+1)/2 then do;

print "Invalid length for input vector"; STOP;
end;
U = j(n,n,0);
col = repeat(1:nrow(U), nrow(U));
row = T(col);
idx = loc(row<=col); /* indices of upper triangular matrix */
U[idx] = x; /* assign values to upper triangular */
L = T(U); /* copy to lower triangular */
idx = loc(row=col); /* indices of diagonal elements */
L[idx] = 0; /* zero out diagonal for L */
return(U + L); /* return symmetric matrix */

finish;

y = 1:15;
z = MySqrVech(y);
print z;

Figure A.8 A Symmetric Matrix

z

1 2 3 4 5

2 6 7 8 9

3 7 10 11 12

4 8 11 13 14

5 9 12 14 15

336 Appendix A: A SAS/IML Primer

A.9.4 The SAMPLE Function
The SAMPLE function generates a random sample from a finite set. The SAMPLE function is used
for bootstrapping in Section 15.5. The SAMPLEREPLACE module implements random sampling
with replacement and equal probability. The SAMPLEREPLACE function returns an n � k matrix
of elements sampled with replacement from a finite set.

/* Random sampling with replacement and uniform probability.
Input: A is an input vector.
Output: (n x k) matrix of random values from A. */

start SampleReplace(A, n, k);
r = j(n, k); /* allocate result matrix */
call randgen(r, "Uniform"); /* fill with random U(0,1) */
r = ceil(nrow(A)*ncol(A)*r); /* integers 1,2,...,ncol(A)*/
return(shape(A[r], n)); /* reshape and return */

finish;

x = {A B C A A B};
call randseed(1);
s = SampleReplace(x, 3, 4);
print s;

Figure A.9 Samples with Replacement

s

B B A B

A B B C

A B A A

A.10 SAS/IML Modules for Sample Moments
This section includes modules for computing the sample skewness and excess kurtosis of a univariate
sample.

proc iml;
/* Formulas for skewness and kurtosis from Kendall and Stuart (1969)

The Advanced Theory of Statistics, Volume 1, p. 85.

*/
/* Compute sample skewness for columns of x */
start Skewness(x);

n = (x^=.)[+,]; /* countn(x, "col") */
c = x - x[:,]; /* x - mean(x) */
k2 = (c##2)[+,] / (n-1); /* variance = k2 */
k3 = (c##3)[+,] # n / ((n-1)#(n-2));
skew = k3 / k2##1.5;
return(skew);

finish;

A.10: SAS/IML Modules for Sample Moments 337

/* Compute sample (excess) kurtosis for columns of x */
start Kurtosis(x);

n = (x^=.)[+,]; /* countn(x, "col") */
c = x - x[:,]; /* x - mean(x) */
c2 = c##2;
m2 = c2[+,]/n; /* 2nd central moments */
m4 = (c2##2)[+,]/n; /* 4th central moments */

k2 = m2 # n / (n-1); /* variance = k2 */
k4 = n##2 /((n-1)#(n-2)#(n-3)) # ((n+1)#m4 - 3*(n-1)#m2##2);
kurtosis = k4 / k2##2; /* excess kurtosis */
return(kurtosis);

finish;

/* for the Gamma(4) distribution, the skewness
is 2/sqrt(4) = 1 and the kurtosis is 6/4 = 1.5 */

call randseed(1);
x = j(10000,1);
call randgen(x, "Gamma", 4);
skew = skewness(x);
kurt = kurtosis(x);
print skew kurt;

Figure A.10 Sample Skewness and Kurtosis

skew kurt

0.9822668 1.4723117

In many applications, several sample moments are needed for a computation or analysis. In these
situations, it is more efficient to compute the first four moments in a single call, as follows:

/* Return 4 x p matrix, M, where
M[1,] contains mean of each column of X
M[2,] contains variance of each column of X
M[3,] contains skewness of each column of X
M[4,] contains kurtosis of each column of X */

start Moments(X);
n = (x^=.)[+,]; /* countn(x, "col") */
m1 =x[:,]; /* mean(x) */
c = x-m1;
m2 = (c##2)[+,]/n; /* 2nd central moments */
m3 = (c##3)[+,]/n; /* 3rd central moments */
m4 = (c##4)[+,]/n; /* 4th central moments */

M = j(4, ncol(X));
M[1,] = m1;
M[2,] = n/(n-1) # m2; /* variance */
k3 = n##2 /((n-1)#(n-2)) # m3;
M[3,] = k3 / (M[2,])##1.5; /* skewness */
k4 = n##2 /((n-1)#(n-2)#(n-3)) # ((n+1)#m4 - 3*(n-1)#m2##2);
M[4,] = k4 / (M[2,])##2; /* excess kurtosis */
return(M);

finish;

338 Appendix A: A SAS/IML Primer

A.11 References

Wicklin, R. (2010), Statistical Programming with SAS/IML Software, Cary, NC: SAS Institute Inc.

